

Antiviral Nanofibrous Protective Mask

Quantum Filtration Masks made up of nano-sized fibers impregnated with antiviral agents, deliver 99% filtration efficiency. In addition, it provides extraordinary comfortable wear satisfaction. The membranes, which consist of a featherlight nanofiber layer with two thin non-woven fabrics, fully meet user expectations with its superior moisture and air permeable structure and morphology.

Applications

Bacterial and viral protection for first responders, doctors, nurses, healthcare networks, military, assisted living facilities, protection from pollution, smog, diesel fumes and cigarette smoke, suitable for protection from all particulates including airborne biohazards.

Specifications

Filter material Structure : Proprietary : Non-woven nanofibers with an average size of 0.2µm : 99% at 85 L/min

Filtration efficiency : 99% at 85 L/min

Features

- 99% filtration efficiency
- Protects against pathogens that includes but not limited to Corona (COVID-19) and Influenza (H1N1) viruses
- Very high surface area per unit mass that enhances capture efficiency
- Gradient pore size specifically designed to trap small pathogens
- Significantly higher breathability than N95 masks
- Flexible and comfortable in wearing
- Killing of bacteria and deactivation of virus attribute is currently under laboratory scientific verification

Mask Membrane Tests

Lab Name	Test Name	Results Purpose		Comments	
Air Techniques International	Filtration Effiency	Pass	NIOSH	Averge over 99% filtration efficiency	
Nelson Laboratories	Synthetic Blood Penetration	Pass	ASTM F2100	No Penentration	
Nelson Laboratories	Flammability Test	Pass	ASTM F2101	Class 1 (Top Class)	
Nelson Laboratories	Cytotoxicity	Pass	ASTM F2102	Grade 0 (Best Grade)	
Nelson Laboratories	Particle Filtration Efficiency	Pass	ASTM F2103	Average 99%	
Nelson Laboratories	Virus Filtration Efficiency	Pass	ASTM F2104	Averge 99.5%	
Nelson Laboratories	Bacterial Filtration Efficiency	Pass	ASTM F2105	Averge 99.5%	
MicroChem Laboratory	MS2 Bacteriophage	Pass	AATCC 100	Over 99% virus reduction	
Matregenix Research Center	Antimicrobial Study	Pass	ASTM E2315	Over 99.9% reduction after 25 min contact time	
MicroChem Laboratory	Human coronavirus, Strain 229E	On-going	AATCC 100	N/A	
Matregenix Research Center	H1N1 and H3N2	On-going	Antiviral Property	N/A	
Matregenix Research Center	Membrane microstructure	Available upon request	N/A	Visual SEM images interpretation, fiber diameter analysis, Porosity measurements, contact angle	

FILTER TEST REPORT

					PAGE 1 OF 1
CUSTOMER		TEST CF		NUMBER ORDERED	DATE RECEIVED Various
PURCHASE ORDER NUMBER N/A		@ RATED FLOW RESISTANCE (mm W.G.)		NUMBER RECEIVED 3	DATE TESTED 4/28/20
FILTER MODEL NUMBER N/A		@ 100 % RATED FLOW SPECIFICATION		NUMBER ACCEPTED N/A	DATE SHIPPED N/A
MANUFA -	CTURER -	NaCI aerosol charac NIOSH 420	teristics compliant with CFR Part 84 S T	REJ	ЕСТЅ
FILTER DESCRIPTION Flat Sheet Media		Test Air Temperature 22.2° C	TEST FLOW (SLPM) 85 ± 0.1	PENETRATION NA	RESISTANCE NA
P.O. Approved By: N/A	rated flow (slpm) 85± 1	BAROMETRIC PRESS N/A Alicat Flow Meter	Test Air Humidity in 40% RH	DAMAGE NA	OTHER NA
ITEM No.	FILTER SAMPLE NUMBER ^(SEQUENCE)	RESISTANCE (mm W.G.)	TEST RESULTS PENETRATION % @100%	FILTRATION EFFICIENCY % N/A	FILTER TESTED BY:
1	Sample #18	32.2	0.3051	99.6949	MH
2	Sample #19	27.6	0.6203	99.3797	MH
3	Sample #20	30.3	0.4635	99.5365	MH
DISTRIBUTION NIOSH 42 0.075 ± 0.02 GSD (0.30 µm Mi		oad/1 second test 2 CFR Part 84: 20 µm CMD @ <1.86 MD)	TESTED BY: Men	g Hu	

Sponsor: Kevin Guo Matregenix 5270 California Ave. # 300 Irvine, CA 92617

Flammability of Clothing Textiles Final Report

Test Article:	QFM-04-14_001	
Study Number:	1289161-S01	
Study Received Date:	16 Apr 2020	
Testing Facility:	Nelson Laboratories, LLC	
	6280 S. Redwood Rd.	
	Salt Lake City, UT 84123 U.S.A.	
Test Procedure(s):	Standard Test Protocol (STP) Number:	STP0073 Rev 06
	Customer Specification Sheet (CSS) Number:	202002323 Rev 01
Deviation(s):	None	

Summary: This procedure was performed to evaluate the flammability of plain surface clothing textiles by measuring the ease of ignition and the speed of flame spread. The parameter of time is used to separate materials into different classes, thereby assisting in a judgment of fabric suitability for clothing and protective clothing material. The test procedure was performed in accordance with the test method outlined in 16 CFR Part 1610 (a) *Step 1 - testing in the original state*. Step 2 - *Refurbishing and testing after refurbishing*, was not performed. All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Test Article Side Tested: Outside Surface Orientation: Machine

Test Criteria for Specimen Classification (See 16 CFR Part 1610.7):

Class	Plain Surface Textile Fabric
1	Burn time ≥3.5 seconds
2	Not applicable to plain surface textile fabrics
3	Burn time <3.5 seconds

The 16 CFR Part 1610 standard specifies that 10 replicates are to be tested if, during preliminary testing, only 1 test article exhibits flame spread and it is less than 3.5 seconds or the test articles exhibit an average flame spread less than 3.5 seconds. Five replicates are to be tested if no flame spread is observed upon preliminary testing, if only 1 test article exhibits flame spread and it is equal to or greater than 3.5 seconds, or if the average flame spread is equal to or greater than 3.5 seconds. In accordance with the standard, 5 replicates were tested for this study.

06 May 2020 Curtis Gerow, B.S. Study Completion Date Study Director 1289161-S01 FRT0073-0001 Rev 9 rkw sales@nelsonlabs.com 801-290-7500 nelsonlabs.com 1 Page 1 of 2

Sponsor: Kevin Guo Matregenix 5270 California Ave. #300 Irvine, CA 92617

Latex Particle Challenge Final Report

Test Article:	QFM-050120-001	
	QFM-050120-002	
	QFM-050120-003	
	QFM-050120-004	
	QFM-050120-005	
Purchase Order:	M-050120-005	
Study Number:	1296805-S01	
Study Received Date:	06 May 2020	
Testing Facility:	Nelson Laboratories, LLC	
	6280 S. Redwood Rd.	
	Salt Lake City, UT 84123 U.S.A.	
Test Procedure(s):	Standard Test Protocol (STP) Number:	STP0005 Rev 07
Deviation(s):	Quality Event (QE) Number(s):	QE22125

Summary: This procedure was performed to evaluate the non-viable particle filtration efficiency (PFE) of the test article. Monodispersed polystyrene latex spheres (PSL) were nebulized (atomized), dried, and passed through the test article. The particles that passed through the test article were enumerated using a laser particle counter.

A one-minute count was performed, with the test article in the system. A one-minute control count was performed, without a test article in the system, before and after each test article and the counts were averaged. Control counts were performed to determine the average number of particles delivered to the test article. The filtration efficiency was calculated using the number of particles penetrating the test article compared to the average of the control values.

The procedure employed the basic particle filtration method described in ASTM F2299, with some exceptions; notably the procedure incorporated a non-neutralized challenge. In real use, particles carry a charge, thus this challenge represents a more natural state. The non-neutralized aerosol is also specified in the FDA guidance document on surgical face masks. All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Test Side:	Either
Area Tested:	91.5 cm ²
Particle Size:	0.1 µm
Laboratory Conditions:	21°C, 24% relative humidity (RH) at 0214; 20°C, 25% RH at 0318
Average Filtration Efficiency:	98.95%
Standard Deviation:	0.152

Sarah Guzman electronically approved for Study Director

Curtis Gerow

30 May 2020 20:45 (+00:00) Study Completion Date and Time

brd

801-290-7500 nelsonlabs.com sales@nelsonlabs.com

FRT0005-0001 Rev 6 Page 1 of 2

Sponsor: Kevin Guo Matregenix 5270 California Ave. # 300 Irvine, CA 92617

Viral Filtration Efficiency (VFE) Final Report

Test Article:	QFM-050120-001		
	QFM-050120-002		
	QFM-050120-003		
	QFM-050120-004		
	QFM-050120-005		
Purchase Order:	M-050120-005		
Study Number:	1296803-S01		
Study Received Date:	06 May 2020		
Testing Facility:	Nelson Laboratories, LLC		
	6280 S. Redwood Rd.		
	Salt Lake City, UT 84123 U.S.A.		
Test Procedure(s):	Standard Test Protocol (STP) Number:	STP0007	Rev 16
Deviation(s):	None		

Summary: The VFE test is performed to determine the filtration efficiency of test articles by comparing the viral control counts upstream of the test article to the counts downstream. A suspension of bacteriophage Φ X174 was aerosolized using a nebulizer and delivered to the test article at a constant flow rate and fixed air pressure. The challenge delivery was maintained at 1.1 - 3.3 x 10³ plaque forming units (PFU) with a mean particle size (MPS) of 3.0 µm ± 0.3 µm. The aerosol droplets were drawn through a six-stage, viable particle, Andersen sampler for collection. The VFE test procedure was adapted from ASTM F2101.

All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Test Side:	Either
Test Area:	$\sim 40 \text{ cm}^2$
VFE Flow Rate:	28.3 Liters per minute (L/min)
Conditioning Parameters:	85 \pm 5% relative humidity (RH) and 21 \pm 5°C for a minimum of 4 hours
Positive Control Average:	2.0 x 10 ³ PFU
Negative Monitor Count:	<1 PFU
MPS:	2.7 μm

Reid Jones electronically approved for Study Director

James Luskin

03 Jun 2020 14:11 (+00:00) Study Completion Date and Time

801-290-7500 nelsonlabs.com sales@nelsonlabs.com

brd FRT0007-0001 Rev 16 Page 1 of 2

These results apply to the samples as received and relate only to the test article listed in this report. Reports may not be reproduced except in their entirety. Subject to NL terms and conditions at www.nelsonlabs.com

QT QUANTUM FILTRATION Powerd by Matregenix

Sponsor: Kevin Guo Matregenix 5270 California Ave. #300 Irvine, CA 92617

Bacterial Filtration Efficiency (BFE) and Differential Pressure (Delta P) Final Report

Test Article:	QFM-050120-001	
	QFM-050120-002	
	QFM-050120-003	
	QFM-050120-004	
	QFM-050120-005	
Purchase Order:	M-050120-005	
Study Number:	1296816-S01	
Study Received Date:	06 May 2020	
Testing Facility:	Nelson Laboratories, LLC	
	6280 S. Redwood Rd.	
	Salt Lake City, UT 84123 U.S.A.	
Test Procedure(s):	Standard Test Protocol (STP) Number:	STP0004 Rev 18
Deviation(s):	None	

Summary: The BFE test is performed to determine the filtration efficiency of test articles by comparing the bacterial control counts upstream of the test article to the bacterial counts downstream. A suspension of Staphylococcus aureus was aerosolized using a nebulizer and delivered to the test article at a constant flow rate and fixed air pressure. The challenge delivery was maintained at 1.7 - 3.0 x 10³ colony forming units (CFU) with a mean particle size (MPS) of $3.0 \pm 0.3 \ \mu m$. The aerosols were drawn through a sixstage, viable particle, Andersen sampler for collection. This test method complies with ASTM F2101-19 and EN 14683:2019, Annex B.

The Delta P test is performed to determine the breathability of test articles by measuring the differential air pressure on either side of the test article using a manometer, at a constant flow rate. The Delta P test complies with EN 14683:2019, Annex C and ASTM F2100-19.

All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Test Side: Either BFE Test Area: ~40 cm² BFE Flow Rate: 28.3 Liters per minute (L/min) Delta P Flow Rate: 8 L/min Conditioning Parameters: 85 ± 5% relative humidity (RH) and 21 ± 5°C for a minimum of 4 hours Positive Control Average: 2.1 x 10³ CFU Negative Monitor Count: <1 CFU MPS: 3.1 µm

Reid Jones electronically approved for Study Director

James Luskin

09 Jun 2020 14:37 (+00:00) Study Completion Date and Time

801-290-7500 FRT0004-0001 Rev 22 nelsonlabs.com sales@nelsonlabs.com brd Page 1 of 2

Sponsor: Kevin Guo Matregenix 5270 California Ave. # 300 Irvine, CA 92617

Synthetic Blood Penetration Resistance Final Report

QFM-04-14_001	
1289168-S01	
16 Apr 2020	
Nelson Laboratories, LLC	
6280 S. Redwood Rd.	
Salt Lake City, UT 84123 U.S.A.	
Standard Test Protocol (STP) Number:	STP0012 Rev 09
None	
	QFM-04-14_001 1289168-S01 16 Apr 2020 Nelson Laboratories, LLC 6280 S. Redwood Rd. Salt Lake City, UT 84123 U.S.A. Standard Test Protocol (STP) Number: None

Summary: This procedure was performed to evaluate surgical facemasks and other types of protective clothing materials designed to protect against fluid penetration. The purpose of this procedure is to simulate an arterial spray and evaluate the effectiveness of the test article in protecting the user from possible exposure to blood and other body fluids. The distance from the target area surface to the tip of the cannula is 30.5 cm. A test volume of 2 mL of synthetic blood was employed using the targeting plate method.

This test method was designed to comply with ASTM F1862 and ISO 22609 (as referenced in EN 14683:2019 and AS4381:2015) with the following exception: ISO 22609 requires testing to be performed in an environment with a temperature of $21 \pm 5^{\circ}$ C and a relative humidity of $85 \pm 10^{\circ}$. Instead, testing was performed at ambient conditions within one minute of removal from the environmental chamber held at those parameters.

All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Number of Test Articles Tested:	32
Number of Test Articles Passed:	32
Test Side:	Either Side
Pre-Conditioning:	Minimum of 4 hours at $21 \pm 5^{\circ}$ C and $85 \pm 5^{\circ}$ relative humidity (RH)
Test Conditions:	20.3°C and 22% RH

Results: Per ASTM F1862 and ISO 22609, an acceptable quality limit of 4.0% is met for a normal single sampling plan when \geq 29 of 32 test articles show passing results.

	Test Pressure:	120 mmHg (16.0 kPa)		
	Test Article Nur	mber	Synthetic Blood Penetra	tion
	1-32		None Seen	
			HALL AND	ACREDITE CENERATORY
	-	M (RWJ) for	29 Apr 202	0
Study Director	r	James W. Luski	n Study Completion	Date
	12891	68-S01		
801-290-7500	nelsonlabs.com	sales@nelsonlabs.com	ks	FRT0012-0002 Rev 13 Page 1 of 1

Sponsor: Kevin Guo Matregenix 5270 California Ave. #300 Irvine, CA 92617

MEM Elution Final Report

Test Article:	QFM-050120-001			
Purchase Order:	M-050120-005			
Study Number:	1296799-S01			
Study Received Date:	07 May 2020			
Testing Facility:	Nelson Laboratories, LLC 6280 S. Redwood Rd.			
	Salt Lake City, UT 84123 U.S.A.			
Test Procedure(s): Deviation(s):	Standard Test Protocol (STP) Number: None	STP0032	Rev	10

Summary: The Minimal Essential Media (MEM) Elution test was designed to determine the cytotoxicity of extractable substances. An extract of the test article was added to cell monolayers and incubated. The cell monolayers were examined and scored based on the degree of cellular destruction. All test method acceptance criteria were met. Testing was performed in compliance with US FDA good manufacturing practice (GMP) regulations 21 CFR Parts 210, 211 and 820.

Results:

Test Article:

Results			Scores	\$	Extraction Ratio	Amount Tested / Extraction		
Pass/Fail	#1	#2	#3	Average	Extraction ratio	Solvent Amount		
Pass	0	0	0	0	6 cm²/mL	120 cm ² / 20 mL		

Controls:

Identification	Scores					Amount Tested /	
	#1	#2	#3	Average	Extraction Ratio	Extraction Solvent Amount	
Negative Control - Polypropylene Pellets	0	0	0	0	0.2 g/mL	4 g / 20 mL	
Media Control	0	0	0	0	N/A	20 mL	
Positive Control - Latex Natural Rubber	4	4	4	4	0.2 g/mL	4 g / 20 mL	

13 May 2020 13:4	8 (+00:00)	
Study Completion Date and Time		
nk	Page 1 of 2	
	<u>13 May 2020 13:4</u> Study Completion	

STUDY REPORT

Study Title Antibacterial Activity and Efficacy of Matregenix's Fabric

Test Method

American Association of Textile Chemists and Colorists Method 100 Assessment of Antibacterial Finishes on Textile Materials

Study Identification Number

NG15388

Study Sponsor

Kevin Guof Matregenix (307) 761-2203 kevin@matregenix.com

Test Facility

Microchem Laboratory 1304 W. Industrial Blvd Round Rock, TX 78681 (512) 310-8378 Testing performed by: Sarah Warner, B.S.

1304 W. INDUSTRIAL BLVD. ROUND ROCK, TX 78681 | © 2016 | CONTACT@MICROCHEMLAB.COM | 512.310.8378

Results of the Study

Test Microorganism	Carrier Type	PFU/Carrier	Percent Reduction Compared to Control	Log ₁₀ Reduction Compared to Control		
MS2 Bacteriophage ATCC 15597-B1	Microchem Control	3.00E+06	N/A			
	QFM 000	7.70E+05	74.33%	0.59		
	QFM 001	2.56E+05	91.47%	1.07		
	QFM 002	1.88E+05	93.73%	1.20		
	QFM 003	6.16E+05	79.47%	0.69		
	QFM 004	2.20E+06	26.67%	0.13		
	QFM 005	7.90E+02	99.974%	3.58		
	QFM 006	1.80E+06	40.00%	0.22		
	QFM 007	6.76E+05	77.47%	0.65		
	QFM 008	1.90E+05	93.67%	1.20		
	QFM 009	1.96E+05	93.47%	1.18		
	QFM 010	2.80E+06	6.67%	0.03		
	QFM 011	1.01E+03	99.966%	3.47		
The limit of detection for this assay is 1 00E+01 PEU/carrier and is reported as						

The limit of detection for this assay is 1.00E+01 PFU/carrier and is reported as <*1.00E+01 PFU/carrier in the table above and as zero in the graph.*

Page 9 of 10

1304 W. INDUSTRIAL BLVD. ROUND ROCK, TX 78681 | © 2016 | CONTACT@MICROCHEMLAB.COM | 512.310.8378

Antimicrobial Study of Nanofibers Report

Test Article: 12 Nanofibers Study Number: QFM-060120-001 Study Received Date: 06/01/2020 Testing Facility: Matregenix Research Center, 5270 California Ave, #300 Irvine, 92617 Test Procedure(s): Modified ASTM E2315 Time-Kill Test Deviation(s): None

Summary: This procedure was performed to evaluate effective antimicrobial time of 9 different nanofiber samples.

It is designed based on the ASTM E2315 "Standard Guide for Assessment of Antimicrobial Activity Using a

Time-Kill Procedure.

- 100ul of dilutions 10⁻³ to 10⁻⁵ were plated, incubated overnight at 37 C and counted the next day.
- 9 nanofiber samples were tested for a single time point (3 hours). 4 samples were selected and further tested using **Modified ASTM E2315 Time-Kill Test-** a multiple time series points method.
- At time points 25, 50, 75 and 100 minutes, 100 uL of the 10⁻³ to 10⁻⁵ dilutions of E. coli was added to each respective plate, incubated overnight at 37 °C and counted the next day.

All test method acceptance criteria were met.

Test bacteria: BL21 E-coli Nanofibers: QFM-000, QFM-001, QFM-002, QFM-003, QFM-004, QFM-005, QFM-006, QFM-007, QFM-008, QFM-009, QFM-010, and QFM-011 Time points: 25, 50, 75, 100 and 180 min

Results: After 3 hours, all 8 nanofibers killed 100% E-coli bacteria. After 25 mins, there were no detectable bacterial (100% reduction) treated by QMF-003, QFM-007 and QFM-011 nanofiber samples. Untreated nanofiber showed a time-dependent increase in bacterial killing, but was the least potent among the four nano-fibers tested. QFM-003 was the most optimal fiber for bacterial killing as seen by the 12-minute time to kill 50% of bacteria compared to the 36 minutes it took untreated fiber to kill 50% of bacteria.

Kevin Juo

Study Director

Kevin Guo

Study Completion Date